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The geometry of the group manifold is generalized to allow the construction of a 
general relativistic theory exhibiting all the degrees of freedom of the group in its 
dynamical variables. The theory has features of a multidimensional Kaluza-Klein 
theory with noncommuting Killing vectors. The resulting fields suggest, however, 
a teleparallelistic formulation. The geometry and gauge invariance of the theory 
are discussed. 

1. INTRODUCTION 

The mathematical problem of de Sitter covariant field equations was 
treated early by Dirac (Dirac, 1935). The first suggestion to construct a 
de Sitter covariant general relativistic theory was probably made by Lubkin 
(Lubkin, 1971). A formulation based on a generalization of Pauli's version 
of the principle of equivalence was performed by the present author 
(Halpern, 1977). 

A large number of publications have appeared since on de Sitter 
covariant general relativity. A common feature of the vast majority of 
publications on the subject seems to be that de Sitter covariance is assumed 
at the begizming when dealing with the simplest situations. Later the large 
radius of the universe is claimed to make the transition to a Poincar6 
invariant theory. The introduction of de Sitter covariance appears then 
rather as  an artifice to achieve elegant formulations of Poincar~ covariant 
theories. 

There is, however, a fundamental difference between the simple 
de Sitter (and anti-de Sitter) group and the Poincar6 group, and if de Sitter 
eovariance would indeed be a better approximation for the description of 
nature (for which we certainly do not have any evidence yet), then we may 
expect deep-going consequences for physics. 
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The spirit from which the present work originated is to assume the 
covariance as fundamentally true although broken by perturbing conditions. 
The motive is rather the beauty of the symmetry than a Machian justifica- 
tion. The conclusion is that any possible degree of freedom that can be 
associated with the symmetry should be considered. 

We start out in this spirit from an arbitrary group manifold and 
consider all the degrees of freedom of the group as candidates for dynamical 
variables. 

A method to arrive from the space-time manifold to the group mani- 
fold has been briefly presented (Halpern, 1979). 

The method consists in extension of the representation space of the 
group of transformations starting from space-time and including the trans- 
formation of the first and successively higher differentials until the orbit of 
the group in the resulting higher-dimensional space forms the group mani- 
fold. 

Section 2 of the present work recalls some basic relations of the group 
manifold and its geometry. We are mainly interested in local properties. The 
relation of the geometry of the group space to that of space-time is 
demonstrated. 

These geometrical properties and the previous considerations suggest a 
generalization of the group manifold to the space of a multidimensional 
theory of the Kaluza-Klein type (Kaluza, 1921). The noncommutativity of 
the Killing vectors requires, howe~,er, generalizations and modifications. The 
mathematical aspects are presented in Sections 3 and 4. 

The formalism stimulates many physical questions; it predicts a cosmo- 
logical inertial field of the electromagnetic type and additional degrees of 
freedom. The form of the fields suggests a teleparallelistic generalization of 
the theory. Right when parity violation was discovered Pauli and many 
other physicists suspected that it may be caused by the existence of 
higher-dimensional curved spaces. The present formulation seems to indi- 
cate a somewhat different geometric relation associated with noncommuta- 
tivity of the generators. 

A second publication on the subject which is now in preparation should 
discuss the questions arising in the present article in fuU detail. 

2. REVIEW OF THE GEOMETRY OF THE GROUP 
MANIFOLD OF A SEMISIMPLE GROUP 

A detailed presentation of the geometry of the group manifold is given 
in Eisenhart (1933) and a shorter review for physicists in De Witt (1963). 
We only remind the reader here of some fundamental relations of impor- 
tance to us and fix the notation. The proofs for theorems which we shall 
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need are given in the following sections, in a form which allows them to be 
applied to generalizations of the group manifold. 

We denote a basis of the tangent vectors on the group manifold which 
generate left-invariant infinitesimal right translations by A R (R--- 1 �9 �9 .r; the 
dimension of the group space); a corresponding basis of right-invariant 
infinitesimal left translations is denoted by ~T R. The former form a basis of 
the Lie algebra of the group, the latter of that of the reciprocal group 
(Eisenhart, 1933): 

[AR, As]=CffsAr, [AR, As]=CsrRAr 

[AR, XS] =0  (1) 

(Basis indices are capital Latin letters; coordinate indices are lower ease 
Latin letters.) 

The complementary left- and right-invariant forms are denoted by A R 
and X R, respectively. Given a law of composition of the group: 

z ' = ~ ( x ,  y)  or short: z=xy (2) 

we have in components 

A ~ =  ~ R ( x - l , y ) ]  
Oyr y=x 

[ O~R(y ,x -1)  ] 

(2a) 

and, e.g., the left invariance of A R resulting from the group property states 

y) 
A~(z) -A~(y )  (2b) OyS 

The exterior derivatives fulfill 

dA R + Cr 

aYR-c  ysy =o 

A semisimple group has a nonsingular metric: 

- -  U V vl~S - C~vCvs 

(la) 

( lb) 

(3) 

which can be diagonalized with values -+ 1 by a linear transformation of the 
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base. A Riemannian metric is obtained for the group space: 

- n s - - n  7 s  (3a) guy - A u  7RsAv --Au 7nsA~ 

At every point A R, iT R are related by an adjoint transformation which does 
not alter the structure constants. 

Because of equations (1) the metric obeys Killing's equations: 

guo,tA t q-gtvAt, u +gutAt, v--O (4) 

for all A which are linear superpositions of the A n and ~T s. A n as well as ~T R 
form orthogonal n-tuples in the group manifold with metric (3a). The metric 
(3a) is that of an Einstein space with Ricci tensor: 

t - -  - - _ _ 1  (5) 
Subgroups of the reciprocal group have orbits which form systems of 
imprimitivity in the group manifold (Eisenhart, 1933). 

A coordinate system can in general be introduced in which the matrix 
of the components (A~) has the following form: 

/,g(x,), o ) 
(eTa) = / ~TTCx, a X~(x"  ) (6) 

k J \  1 ,  

Here coordinates labeled by m, n and basis indices M belong to the 
subgroup ~and its orbits in the group manifold, whereas coordinates and 
basis indices labeled i, j and I, J belong to the complementary sets and r, s 
and R, S run over all indices. 

For example the de Sitter and anti-de Sitter groups 0(4, 1) and 0(3, 2) 
have each ten parameters and six-parameter subgroups. The de Sitter space 
time is the factor space with the contravariant metric: 

i k  _ " ~  R S - -  k g (Y) 
due to the particular form of (6) and equations (1) gik(xi) does not depend 
on x m (m>4)  although A~ does. x i can then be considered as coordinates of 
space-time. The covariant metric of space-time is not that of equation (3a) 
but rather the algebraic complement of gik (i, k<4)  above. We shall see that 
the mixed components gi,~ can in this case not all be made to vanish 
everywhere by a coordinate transformation. 
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The trajectories of the group are geodesics on the group manifold with 
the metric (3a). 

3. GENERALIZATION OF THE FORMALISM 

The de Sitter space time emerges in Section 2 from the factor space of 
the ten-parameter group with respect to a six-parameter subgroup of the 
reciprocal group. The metric on the group manifold has been obtained by 
choosing the basis vectors as an orthogonal n-tuple (decuple in the de Sitter 
case). The metric of de Sitter space-time is then obtained by choosing the 
basis vectors of the factor space as an orthogonal quadruple (tetrades) [see 
equations (6) of Section 2]. The metric of space-time does not depend on the 
coordinates x m of the subgroup; however, that of the tetrads obtained from 
the basis vectors of the reciprocal group does. This dependence is, however, 
only on adjoint transformations of the first four basis vectors among 
themselves (tetrad rotations) and seems not physically significant. 

Application of the method up till now is of course not limited to the 
de Sitter group. Any semisimple group with suitable subgroup can serve the 
purpose. 

A main idea of the present work is that if the semisimple invariance 
group is truly fundamental, then all its operations should be as far as 
possible on an equal footing. The fact that also the nongeodesic timelike 
group trajectories in de Sitter space allow a physical interpretation (for 
example as due to charges in special electromagnetic fields) serves as an 
encouragement for this point of view (Halpern 1980). 

The de Sitter space corresponds to the absence of localized matter 
distribution. We have to generalize it to describe physics. The procedure 
adopted here is to leave the six-dimensional subgroup and the space of the 
tetrads as factor space. Thus equation (6) still looks the same, but the first 
four members of the (still orthogonal) decuple (we denote them here by BF 
instead of At )  do not belong in general to a Lie algebra. The space-time 
metric formed as before out of the decuple, still does not depend on x m. 

A minimum requirement which must be imposed, however, is that the 
last six ffM(xn)=A~ remain Killing vectors; otherwise the remaining six 
dimensions would become observable. We adopt thus a main point of view 
of the Kaluza-Klein theory. (Kaluza, 1928; Einstein, 1927; Klein). The 
difference from other multidimensional generalizations of this theory is that 
the most symmetric case is that of the manifold of a non-Abelian (here even 
simple) group and that the present theory (or at least some versions of it) is 
even teleparallelistic. Motions exist also in non-Riemannian spaces. The 
generalized Riemannian metric or the BR must be determined by field 
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equations in ten dimensions which will have, in general, a source term. To 
see what the condition that BM =~TM(Xm) remain Killing vectors implies we 
write the complementary matrix to the B R in the same coordinate system: 

We have 

but also 

[ ~J~x'~ ) ( f iR)=[ ~" ,' ~M(xt) (6a) 
" "  / o, 

BtR/~} =8~, fftRB--~ =8[  (6b) 

/~.r ~k _ ~s /~.r/~ = ~k (6b ~ ) 
k~,H - - v  H,  

where according to our rule the indices in the second set of equations run 
from 1 to 4. The metric is accordingly 

_ - E  ~'F ~-M ~-N ( 3 b )  
g i k - - B i  T E F B k  + B i  T M N B k  

- -  - - M  ~-N - -  ~ -m ~ N  (3c) gim--Bi TMNB~, gmn--Br~ YMNB~ 

Killing's equations for vectors/~M require in this case 

gik,,,, =0 (3d) 

gi,,,,nB~t + g~nB~t,m =0 (3e) 

The first part of g~k, equation (3b), is the metric of space-time which is 
independent of x"; the second part as well as the gim fulfill Killing's 
equations iff: 

- - a  M ~ P ~ O  (3f) f iM, m ~" "PQ'Ui ~'m 

Killing's equations for g,~ are fulfilled because 

Bn~ - A m 

Next we show that even for the de Sitter case coordinate transforma- 
tions 

x ti =x i, x 'm =xtm(x k, x n ) (7) 
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which are the analog of gauge transformations in the Kaluza-Klein theory 
cannot remove all the gim and consequently also not the g~m: 

Proof gim a.- 0 implies for (7) 

g,is Oxtm Oxtm 
AT~ ~ (7a) Ox ~ =0  and =0 

In the de Sitter case, however, 

so that also the six equations 

:cfSM (8) 

7-,, Ox'm_ (7b) A~, O--2r - 0  

must be fulfilled, which is not possible except for constants x TM. 
This shows us that the gim are not suitable potentials for the present 

generalizations of the Kaluza theory. 
We find that the f i r  are suitable potentials and obtain thus a theory 

with teleparallelism. 
The fields in this theory are then 

F R : d ~  R --CffTJffSff r (lc) 

�9 The requirement that/YM =~Tm be Killing vectors translates then into 

If we impose in addition 

we obtain 

and 

M-- (ld) Fi.--O, FZ=O 

Fie~ =0 ,  Fme~ =0 (le) 

~ E  ~_ _E ~ M ~ F  
1,m --r ' 

B--~E__F ~ M ~ i  - - C E M D m D  E (9) 

F i R  -- _R ~MrS (9a) 
k, m --  t"SM'~ l"ik 

which says that displacement in the direction of the Killing vectors BM 
generates only an adjoint transformation of the fields Fi~ so that the tensor 
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space-time coordinates. 
The case where in addition to equations (9) also the tensor 

F~t=Ft,. ~,t I (11) 

is completely skew symmetric shows the greatest regularity while still 
allowing a more general metric of space-time: 

Frs t ~-0 if r, s, or t > 4  

because also F ~  = 0. This requirement is equivalent to 

F M = 0  
as one can easfly see. 

Theorem. If 

Fuo~ =(gw~u- ~ + C:T~:~) ~,~o~ 

( l la )  

(~2) 

is totally skew symmetric, then all the B~ are Killing vectors and all 
their trajectories are geodesics. 

Proof. Csrl.=2tRrcR r is totally skew symmetric and thus also 
~'S --T --Y CsrTB~BuB ~ and consequently also the remaining right-hand term in 

equation (12). This term can be written as 

(3'rsr - Yrrs)/~vr/~wS/~f with the Ricci rotation coefficients: 

YVST =/~ff; uB~B~TRY (12a) 

because of antisymmetry for Y--S: YTss = 0, which is the condition that the 
trajectory of B r is a geodesic (Eisenhart, 1961). 

Furthermore with the metric of the orthogonal n-tuple Killing equa- 
tions for a vector/~E are 

~.v( BL~E V + ~.Y, ~ + ~.~ v~,. + B,.E~, ~ ) 

--'~Uv[ ( B;,t -- B;,, ) ns B E + ,  s,t t,s )BrVBte] = Fm + F,r, + C,,, + C,,, =O 

(13) 

F~j k = F~R/~ (10) 

are independent of such displacements and depend thus only on the 
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because of the antisymmetry. Thus every/~e is also a Killing vector. The 
space-time metric need not be just that of the group space in order not to be 
interfering with these properties. 

The following section compares geodesics in the ten-dimensional space 
and in space-time. 

4. GEODESICS AND THEIR PROJECTION ON SPACE-TIME 

According to the theorem of the last section, the trajectory of every/7 R 
is a geodesic if F m is skew symmetric. 

B R are unit vectors and we can introduce the parameter T of a given 
geodesic such that 2 r = / ~ C R  = B  r with constant C R. On the points of the 
geodesic we have also 

X r - - B r  B t (14) 

Let us introduce the coordinate system used in the previous sections where 
x ~ (i~<4) were also coordinates of space-time. We form now 

2 i +  { f k } 2 J2 h - B i B' + { j ik  } nJBk = Bik nk qt- BimBm -[- { f k } BJB k 
- -  , t  , , 

(14a) 

The Christoffel connection is here formed with the metric of space-time; 
expressing it by the space-time tetrads B~ one obtains from (14a) 

B I m B m A r g i I ( B ' - I G ,  j - - B j G ,  I ) ] I G B C B ~ C A  ( i , e , j , A , B , G < - 4 ,  m>4)  

(14b) 

all the other terms cancel. In the special case considered previously, where 

m : ['~ F ~ M ~ i  and F M =0  (antisymmetry) JffiE, X'~EMJ"m J"F  

this equals 

E F ~ M ~ ' i  ~ m  H D m  M c +BMC A 

+ g"c..M ( )c.:ac  -F;B- ' 
with 

(14c) 

F i - C F t",Mjff~ jffG 
k - -  G M  ''~ F k 

We see from equations (14a)-(14d) the following. 

(14d) 
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Theorem. the projection of a geodesic on space-time is a geodesic if 
c M =0 (M>4),  whereas it is equivalent to the trajectory of a charge 
in an electromagnetic field F~ if c m 4:0 (Halpern, 1980). 

Conversely: Every geodesic of space-time is the projection of a 
geodesic in the r-dimensional space. If Fj/,t is not antisymmetric (if 
F M ~ o ) ,  there occurs an additional term: 

FSMTMN.~J (14e) 

Only c M 4=0 ( M > 4 )  results in nongeodesic motion. 

5. P R O B L E M S  OF INVARIANCE 

We have seen in the last section that totally antisymmetric fields result 
in a metric space of remarkable symmetry without impairing the generality 
of the space-time metric. With the restrictions of the x m dependence which 
were imposed, antisymmetry is equivalent to F M = O  and this case is no 
doubt closest to the case of general relativity with no other than gravita- 
tional fields present. 

One can now impose a metric Lagrangian: following Kaluza the 
curvature invariant R plus a cosmological member to obtain the correct 
curvature of space in the absence of sources. 

The Riemann tensor in group space can in case of a semisimple group 
be expressed by the structure constants and the AR: 

- -  1 v --R-J-S-- T - -U 
R r s t u -  gCR s C v r v A r  A s A t  Au (15) 

and 

Rs t = 1 1 - -  - -  z g s t ,  R s t  - -  -~gst R - -g s t  (15a) 

so that in our units this cosmological member equals minus unity. Within 
laboratory dimensions we assume the cosmological member unobservably 
small. We assume our unit of length thus of the order of the radius of the 
universe. 

Solutions of the field equations have to be restricted so that/~M =~TM 
are  Killing vectors. 

The second derivatives of our field equations with respect to x k are 
then the same as in Einstein's equations. As long as the derivatives of x "  are 
of cosmological smallness we obtain within the linear approximation order 
of magnitude agreement with general relativity. 
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The electromagnetic field in the Kaluza-Klein theory is expressed in 
terms of the metric tensor component gi5 as 

F i k  = g k S ,  i - -  g i s ,  k (16) 

We have obtained in the previous sections more general expressions for 
ten fields F~k R which allow one even to express the absence of sources of the 
gravitational field. The formulation of field equations in terms of these 
fields is tempting. 

The F R have the well-known gauge covariance: 

~"(x)-~-Jff2(a(x))a"(x),,+pff{a(x))BtS(x) 
F R -~o~(a(x))F s 

with o(a) the matrix of an adjoint transformation with group element a ~ 
which may depend on the point x. (In group space/~R =XR, F R = 0 and the 
right invariance implies also the invariance of ,~R). We prove the following. 

Theorem. If all /~R are Killing vectors the effect of the gauge 
transformation of equation (17) on the metric is equivalent to that 
of a coordinate transformation and a point transformation. 

Proof An infinitesimal transformation with 

o~(a)=yff + CsRr a T 

~R(X)-~--aR(x),,+fftR(x)+CsRT~S(x)a r (17a) 

transforms the metric 

- -  j ~ R  ~ S  R S S R g.v--7Rs . xJ; -~g.v--'[Rs(a,.Sv +a,v6u ) 

~ t  T ~ t  T ~ t  =g.~-g,v(Bra ), +gut(Bra ). +(gt~Br,~+gu, B~..)a r (17b) 

because of Killings equations this equals 

g'~( x ) = g;~(x')--g.v, ,ff~ ar (17c) 

where g'~(x') results from g ~ ( x )  by an infinitesimal coordinate transforma- 
tion: 

x '=x  + Jffra r (17d) 
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A Lagrangian formed out of the fields F '~ and the metric has therefore 
to renounce on the beautiful  gauge invariance [equation (17a)] because the 
metric which is formed out of  the B R transforms in general in a dif- 
ferent way. 

I think this is not a reason to exclude a theory with teleparallelism. The 
gauge invariance which exists in the source-free case of the group space 
seems not to cause difficulties because the X R are not altered by the 
transformations. 

Unless one succeeds in forming a Lagrangian of the fields which is free 
of the metric, which in ten dimensions would no doubt require bizarre 
nonlinear terms, best candidates are the ten-dimensional versions of the 
Lagrangians 

/--F_UF rtV" (18a) ~ l : V g  rt ~vv 

--  U D---"T rtVDs 
~II  --  f gFrs  "YuTBt F B V (18b)  

which in four dimensions have already been considered in Einstein's tele- 
parallelistic theory. 

A more detailed analysis of these cases will follow in a subsequent 
publication. 
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